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SUMMARY

In this second part, we analyse the associated discrete problem arising from a conforming finite element
method formulation of the mathematical model presented in the first part. Thus, existence and uniqueness
of the discrete solution when using small enough data are stated following the same strategy used in
the continuous case, with a Cea’s type error estimate established as the main result. Some numerical
experiments, steady and unsteady, are performed, which allow us to validate the previous mathematical
model and its discrete approximation. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As long as the thermophysical properties of a fluid are not considered to be constant in the model,
or mixed boundary conditions (BCs) are stated for the physical model, Navier–Stokes equations
become non-trivial for analysis. This is principally due to the fact that generalizations of many
ideas and techniques stated for the homogeneous BCs and constant-property situations are not
straightforward.
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92 C. E. PÉREZ ET AL.

Nevertheless, there are many physical situations in which these kinds of models or sets of BCs
are necessary. A good example is an open channel flow, where a fluid particle that leaves the
physical domain does not re-enter that domain anymore. For this kind of situation, in order to be
able to solve the mathematical problem, it is common to state the outflow or ‘do nothing’ BCs
(following the terminology of Gresho and Sani [1] or Turek and Co-workers [2]), in which some
ad hoc BCs at the exit region of the channel are chosen, in the hope that their utilization does not
influence the main flow characteristics which are to be found.

Despite the existence of numerous articles in fluid dynamics which consider some variations
of the thermophysical properties—usually by means of the Boussinesq model—be it theoretically
(see [3–7]) or numerically ([8–11] and the references cited therein), and numerous articles in
which different kinds or sets of BCs are analysed (see [2, 12–16] and the references therein),
to the authors’ knowledge, there are only a few works which consider these two difficulties put
together, as for instance [17, 18].

In the first part of our paper (cf. [19] hereafter referred as ‘Part I’), we have proposed and analysed
a model for the study of steady, two-dimensional incompressible Navier–Stokes equations with
temperature-dependent viscosity and buoyancy, which is well adapted to open flow problems.
We have shown that under sufficiently small and regular prescribed data at the boundary, the
mathematical problem is well posed, with a unique result for small data.

The next step in the mathematical analysis is the study of a numerical procedure which allow
us to find an approximate solution of the continuous problem. This work will be undertaken here
by means of a conforming finite element (FE) discretization. This is not a trivial task, even under
a conforming approach, because of the coupling with the energy equation and also because of the
imposed outflow BCs, as we shall see in the following sections.

Our main result in this part is the statement of an error estimate for the discrete solutions
of a weak formulation of the original problem by considering conforming ‘inf–sup’ compatible
subspaces. Thus, the quality of the numerical approximation becomes related to the quality of the
subspace approximation for each variable.

Finally, the last section is devoted to the numerical experiments. Because the dynamics of
this kind of coupling are expected to be unsteady, we present steady and unsteady experiments,
where the core of the computer code developed is based on the structure of a steady problem (see
Remark 1).

We show that even if the main effect is associated with density in the buoyancy term, in some
circumstances, the temperature influence on the dynamic viscosity has a non-negligible effect on
the main flow characteristics.

2. THE CONTINUOUS PROBLEM

Let � be a two-dimensional domain occupied by an incompressible Newtonian fluid. Even if the
mathematical analysis presented in the next section is only valid for the two-dimensional case, the
model remains valid in the more realistic three-dimensional situation.

We refer here to the steady dimensionless model presented and analysed in Part I. It is based
on some physical considerations, which allow us to consider the Boussinesq assumptions. This
model is generalized by considering temperature dependence on the thermophysical properties of
dynamic viscosity and thermal conductivity.
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NAVIER–STOKES SYSTEM WITH TEMPERATURE-DEPENDENT VISCOSITY 93

By choosing some reference physical quantities, such as length, velocity, time and temperature
Tm (more details are given in Part I), we can define the non-dimensional parameters of the flow: the
Reynolds number Rem , the Grashof number Grm , the Péclet and Prandtl numbers Pem and Prm,

respectively. Also, we can define the non-dimensional version of the thermophysical properties of
dynamic viscosity �∗(T ) and thermal conductivity �∗(T ) as follows:

�∗(T ) = �(T )

�(Tm)
, �∗(T ) = �(T )

�(Tm)
(1)

The main properties considered for these non-dimensional physical properties in the first analysis
were their positiveness, uniform boundedness and Lipschitz-continuity.

The reference parameters chosen give the following dimensionless set of equations (asterisks
and subscript m were omitted for the sake of simplicity):

u · ∇u − 1

Re
∇ · (�(T )D(u)) + ∇ p= Gr

Re2
Tk + F (2)

∇ · u= 0 (3)

�T
�t

+ u · ∇T − 1

Pe
∇ · (�(T )∇T ) = 0 (4)

In (2), k is the unitary vector acting in the direction opposite to gravity. We provide Equations
(2)–(4) with the following BCs: prescribed values for velocity and temperature at the entry and the
walls, and prescribed zero traction forces and zero flux density at the exit. These BCs are obtained
as follows:⎧⎨

⎩
u=ue(x) at the inflow
u= 0 at the walls
r(u, p) · n= 0 at the outflow

,

⎧⎨
⎩
T = Te(x) at the inflow
T = Tu(x), Tl(x) at the walls
(�(T )∇T ) · n= 0 at the outflow

(5)

In (5), r(u, p) is the stress tensor, which depends on the temperature due to the viscosity variation:
r(u, p) =−pdi j + 1/Rem�(T )D(u), where D(u) is the deformation tensor (the symmetric part of
∇u) and d is the Kronecker tensor.

For the mathematical analysis, we consider � to be an open, two-dimensional, bounded and
convex domain with a Lipschitz boundary ��. We assume that we have a set �D ⊆ �� of positive
measure, and we set �N = ��\�D. The portion �D is the part of the boundary associated with the
Dirichlet BCs for velocity and temperature, and �N is associated with the outflow BCs as stated
in (5). These hypotheses concerning the geometry will be considered hereafter.

We restate the BCs of (5) as follows:

u=uD, T = TD on �D (6)

r(u, p) : n= 0, (�(T )∇T ) · n= 0 on �N (7)

In (6), the surface function TD takes the prescribed values of temperature at the entry and at the
walls, which are supposed to be uniformly bounded, that is, there exist two real constants T1 and
T2, such that

T1�TD(x)�T2 on �D (8)
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In (8), due to the non-dimensional temperature definition T ∗ = (T − Tm)/�T , the value of T1 is
not necessarily positive. We have shown in the first part that if no internal energy generation is
allowed in the model, the temperature remains bounded by these uniform constants in the whole
domain.

The set of BCs (6)–(7) suggest naturally the use of the following well-known functional vector
spaces: let L2(�) be the standard Lebesgue space, with norm ‖ · ‖0. We set:

H1(�) =
{
v ∈ L2(�),

�v

�xi
∈ L2(�) for i = 1, 2

}
(9)

H1
0,�D

(�) ={v ∈ H1(�), v|�D = 0} (10)

H1/2(�D) ={� ∈ L2(�D), ∃v ∈ H1(�), v|�D = �} (11)

where v|�D is the partial trace of a function v ∈ H1(�). The analogous vector-valued spaces will
be denoted by bold symbols, for instance: H1

0,�D
= H1

0,�D
× H1

0,�D
. The norm associated with a

Hilbert space Hm(�) will be denoted by ‖ · ‖m . The scalar product associated with the L2(�)

norm will be denoted as (·, ·)0,� or just (·, ·) if it is unambiguous. Throughout this paper, C, with
or without subscript, denotes a generic positive constant depending only on � and �D. The value
of C may differ at different occurrences.

Following [20], for the elements in H1
0,�D

, we have Poincaré’s and Korn’s inequalities as follows:

‖v‖0�C‖∇v‖0 ∀v ∈ H1
0,�D

(12)

‖v‖21�C(‖v‖20 + ‖D(v)‖20) ∀v∈H1
0,�D

(13)

The weak form of (2)–(4) with BCs (6)–(7) is the following: let uD be given in H1/2(�D)

and TD given in H1/2(�D). Find (u, p, T ) in H1(�) × L2(�) × H1(�) such that u|�D = uD and
T |�D = TD solution of:

aT (u, v) + b(u, u, v) − (div v, p)0,� =
(
Gr

Re2
Tk, v

)
0,�

+ (F, v)0,� ∀v∈H1
0,�D

(�) (14)

(divu, q)0,� = 0 ∀q ∈ L2(�) (15)

aT (T,�) + b(u, T, �) = 0 ∀�∈ H1
0,�D

(�) (16)

where

aT (u, v)=
∫

�

1

Re
�(T )D(u) : ∇v (17)

b(u, v,w) =
∫

�
(u · ∇)v · w (18)

aT (�, �) =
∫

�

1

Pe
�(T )∇� · ∇� (19)

b(u,�,�) =
∫

�
(u · ∇)�� (20)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:91–114
DOI: 10.1002/fld



NAVIER–STOKES SYSTEM WITH TEMPERATURE-DEPENDENT VISCOSITY 95

The notations in equations (14)–(20) are inspired by the early work of Duvaut and Lions [21],
who analysed the viscosity coupling problem for a Bingham fluid. The index of the applications
aT and aT have a mission of showing the temperature field which is associated with the functions
of viscosity and conductivity. We note in particular that the expression aT (T, �) in Equation (16)
makes this equation non-linear.

As noted first by Heywood et al. [2], existence analysis of steady, constant-property Navier–
Stokes problem involving ‘do nothing’ BCs is a very difficult task. Thus, the variable-property
model was analysed here by following an alternative variational formulation first proposed by
Bruneau and Fabrie (see [22]) for the constant-property, non-buoyant Navier–Stokes equations.

The alternative variational problem proposed and analysed in the first part is as follows: Find
(u, p, T ) in H1(�) × L2(�) × H1(�), with u=uD, T = TD on �D, solution of:

aT (u, v) + b̃(u, u, v) − (div v, p) =
(
Gr

Re2
Tk + F, v

)
∀v∈H1

0,�D
(�) (21)

(div,u, q)= 0 ∀q ∈ L2(�) (22)

aT (T,�) + b̃(u, T, �) = 0 ∀�∈ H1
0,�D

(�) (23)

In (21) and (23), the ‘convective’ forms b̃ and b̃ are defined by

b̃(u, v,w) =b(u, v,w) + 1

2

∫
�N

[u · n]−v · w (24)

b̃(u,�,�) = b(u,�, �) + 1

2

∫
�N

[u · n]−�� (25)

In (24) and (25), n refers to the unit outward vector to �N and [·]− refers to the ‘negative
part’ function, defined by [ f ]−(x)= sup{− f (x), 0}. We also define the ‘positive part’ function as
[ f ]+(x)= sup{0, f (x)}.

That is, some flux condition on the outflow boundary is introduced into the variational formu-
lation.

We note that a sufficiently regular solution (u, p, T ) of (21)–(23) is also a solution of:

− 1

Re
∇ · (�(T )D(u)) + u · ∇u + ∇ p= Gr

Re2
Tk + F (26)

∇ · u= 0 (27)

u · ∇T − 1

Pe
∇ · (�(T )∇T ) = 0 (28)

T = TD on �D, �(T )∇T · n + 1
2 [u · n]−T = 0 on �N (29)

u=uD on �D, r(u, p)(T ) : n + 1
2 [u · n]−u= 0 on �N (30)

Thus, if the resulting velocity field u is such that u · n�0 on �N, a behaviour which is admis-
sible for small Reynolds and small buoyant forces, then the solution of problem (21)–(23) is
also a solution of (14)–(16) and BCs (6)–(7). This is an important issue, because a solution of
Equations (14)–(16) and BCs (6)–(7) is, at least formally, a solution of the steady problem (2)–(4).
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If u · n�0 (re-entrant flow case), then both the problems (21)–(23) and (14)–(16) are no longer
equivalent, and, in the authors’ knowledge, remains an open problem.

In Part I, the existence and uniqueness of these two uncoupled problems (Navier–Stokes and
energy) were proved, with the uniqueness of the Navier–Stokes equations being guaranteed under
small data conditions (see Theorems 4.1 and 4.2 of [19]). The existence of a solution for the
original coupled problem was established by means of a Picard fixed point strategy, by choosing a
temperature T̂ for the uncoupling which gives rise to ‘frozen’ thermophysical coefficients in each
iteration.

Because of the buoyancy term, an additional hypothesis was stated in order to have a uniform
estimate for the velocity solutions. Denoting by Z : T̂ �→ ZT̂ the application that defines, for each

temperature field T̂ , an operator ZT̂ is as follows:

ZT̂ :H1(�) → H1(�)

u �→ ZT̂ (u) =Unique solution of the linearized energy equation (23)

for a given solenoidal velocity field u

(31)

we will consider as an hypothesis that their inverse application is continuous, an assumption
that yields ‖S(T̂ )‖1,��C‖ZT̂ (S(T̂ ))‖1,�, with S(T̂ ) being the (unique) velocity solution of the

T̂ -uncoupled Navier–Stokes equations. This hypothesis is not unrealistic if we are interested on
moderate Reynolds numbers. In Part I, it is shown that this sequence of Picard iterations converges
to the solution of the non-linear problem. More details can be found in [19].

3. MATHEMATICAL ANALYSIS OF THE DISCRETE PROBLEM

The main part of this article is devoted to the numerical approximation of the coupled problem
whose main characteristics and notations were presented in the companion paper [19]. The dis-
cretization will be realized by the FE method (FEM). For a detailed explanation on the use of
FEM for the Navier–Stokes equations, we refer to [23].

As in the variational formulations presented in the previous section, we have worked with the
deformation tensor D(u). We shall perform the analysis for conforming FE subspaces: discrete
variational formulations with the deformation tensor have some technical difficulties with non-
conforming FE regarding, for instance, Korn’s inequality (see, for instance, [24]).

We recall the variational problem to be discretized: Find (u, p, T ) ∈H1(�) × L2(�) × H1(�)

with u=uD and T = TD on �D such that:

aT (u, v) + b̃(u, u, v) − (div v, p) =
(
Gr

Re2
Tk + F, v

)
∀v∈H1

0,�D
(�) (32)

(div,u, q)= 0 ∀q ∈ L2(�) (33)

aT (T,�) + b̃(u, T, �) = 0 ∀�∈ H1
0,�D

(�) (34)

3.1. Finite element analysis

For the sake of simplicity, we develop the analysis by considering that the discrete domain �h
coincides with the continuous domain �, here supposed to be polygonal.
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Also, for comparison purposes with other references, we adopt similar notations for the continuity
constants utilized in the works of [5, 18], which analysed the standard Boussinesq model. Thus, we
shall from now on denote Ca,Ca,Cb,Cb as the continuity constants of aT (·, ·), aT (·, ·),b(·, ·, ·)
and b(·, ·, ·), respectively. Furthermore, we denote by Cdiv and Cg the continuity constants of the
applications (div v, q) and (Tk, v), that is, for instance:

b(u, v,w) �Cb‖u‖1,�‖v‖1,�‖w‖1,�
(div v, q) �Cdiv‖v‖1,�‖q‖0,�

(35)

Finally, we denote the constants of Korn’s inequality as follows:

Ck‖u‖1,��‖D(u)‖0,��CK ‖u‖1,� (36)

Let h>0 be the mesh discretization parameter, destined to tend towards zero. Let us consider
finite-dimensional subspaces parameterized by h: Xh ⊂H1(�), Y h ⊂ H1(�) and Mh ⊂ L2(�). We
write the spaces used in the previous section in a classical fashion:

Xh
0 =Xh ∩X0, X0 =H1

0,�D
(�)

Y h
0 = Y h ∩ Y0, Y0 = H1

0,�D
(�)

(37)

Both Xh and Y h are Hilbert spaces with the H1-norm, and the homogeneous discrete spaces Xh
0

and Y h
0 are also Hilbert spaces with the gradient (semi-)norm. We keep the L2-norm for Mh .

We recall the compact embedding of H1
0,�D

(�) into L4(�) and of the trace mapping from

H1
0,�D

(�) onto L3(�N) for each v in H1
0,�D

(�) (see [25]).
Before any further hypothesis, we shall assume the following standard interpolation properties

for the discrete spaces: for an integer m�1, and a generic constant C

inf
vh∈Xh

‖v − vh‖1,��Chm‖v‖m+1,� ∀v∈Hm+1(�) (38)

inf
qh∈Mh

‖q − qh‖0,��Chm‖q‖m,� ∀q ∈ Hm(�) (39)

inf
�h∈Y h

‖� − �h‖1,��Chm‖�‖m+1,� ∀� ∈ Hm+1(�) (40)

We shall also admit a compatibility condition between the discrete velocity and pressure spaces
Xh and Mh by assuming that there exists a positive constant �>0 such that

inf
qh∈Mh

sup
vh∈Xh

∫
qh div vh

‖∇vh‖0,�‖qh‖0,� �� (41)

a property which is equivalent to:

sup
vh ∈Xh

∫
qh div vh

‖∇vh‖0,� ��‖qh‖0,� ∀qh ∈ Mh (42)
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98 C. E. PÉREZ ET AL.

or again,

∀qh ∈ Mh, ∃vh ∈Xh such that

(qh, div vh) =‖qh‖20,�
‖∇vh‖0,��C‖qh‖20,�

(43)

Classic pairs of FE families for velocity and pressure verifying (38)–(41) can be found in
[26, 27, 23].

We will also consider the subspaces V and Vh defined by

V= {v∈X0, (div v, q) = 0, ∀q ∈ L2(�)}
Vh = {vh ∈Xh

0, (div vh, qh) = 0, ∀qh ∈ Mh}
(44)

We recall that, in general, the inclusion Vh ⊂ V is not valid. The following affine subspaces are
also necessary in the sequel:

Xh
1 = {vh ∈Xh, vh |�D =uhD}

Xh
2 = {vh ∈Xh

1, (div vh, qh) = 0, ∀qh ∈ Mh}
Y h
1 = {�h ∈ Y h,�h |�D = T h

D }
(45)

That is, in (44) we keep only the divergence-free conditions (continuous and discrete, respectively),
and in (45) we put, in addition, the non-homogeneous BCs in the space Xh

2 . Under compatibility
condition (41), this last space is related to Xh

1, the space with only the non-homogeneous BCs, by
(see [28, Theorem I.3.3]):

inf
vh∈Xh

2

‖u − vh‖�C inf
vh∈Xh

1

‖u − vh‖ (46)

Concerning the discrete representation of the Dirichlet BCs, we shall assume that the discrete
BCs are independent of the lifting considered (but the discrete lifting will depend on the continuous
one). We can therefore consider a discrete lifting u∗

h and T ∗
h of the (discrete) Dirichlet BCs by

means of:

u∗
h = �hu∗ and T ∗

h = �hT
∗

having that u∗
h =u∗ and T ∗

h = T ∗ on �D.
With all these considerations and the geometry assumptions considered at the beginning of this

section, the following result is a simple consequence of Theorems 4.1 and 4.2 of Part I (see [19]),
adapted for the conforming subspace approximation.

Proposition 3.1
Let F∈L2(�), uD ∈H1/2(�D), and TD ∈ H1/2(�D), with T1�TD�T2 a.e. and the traces of the
Dirichlet data uD and TD belonging to H1/2(�D) (that is, �0(u

h
D) ∈H1/2(�D) and �0(T

h
D ) ∈

H1/2(�D)). Under the regularity of the inverse operator defined by (31), the discrete problem
(32)–(34) formulated on a conforming, compatible pair of FE admits a solution (uh, ph, Th) ∈
Xh
2 × Mh × Y h

1 . In addition, if the data are regular and small enough, it is unique.
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Proof
This is a direct application of the analysis performed in Part I, by considering the discrete BCs
and associated liftings u∗

h and T ∗
h . �

If the uniqueness of the solutions of the continuous and the discrete problem can be guaranteed,
we can proceed to quantify the error between the solution (u, p, T ) ∈H1(�) × L2(�) × H1(�) of

aT (u, v) + b̃(u, u, v) − (div v, p) =
(
Gr

Re2
Tk + F, v

)
∀v∈H1

0,�D
(�) (47)

(divu, q)= 0 ∀q ∈ L2(�) (48)

aT (T,�) + b̃(u, T, �) = 0 ∀�∈ H1
0,�D

(�) (49)

and the discrete solution (uh, ph, Th) ∈Xh
2 × Mh × Y h

1 of

aTh (uh, vh) + b̃(uh,uh, vh) − (div vh, ph) =
(
Gr

Re2
Thk + F, vh

)
∀v∈Xh

0 (50)

(divuh, qh) = 0 ∀q ∈ Mh (51)

aTh (Th, �h) + b̃(uh, Th, �h) = 0 ∀�h ∈ Y h
0 (52)

Our main result is the following.

Theorem 3.1
Let the pair of velocity/pressure elements verify the discrete compatibility condition (41). Under
the hypotheses of Proposition 3.1 and some other conditions for the data stated in the constraints
(66) and (70), the following error estimate between the continuous solution of (47)–(49) and the
discrete solution of (50)–(52) holds:

‖u − uh‖1,� + ‖p − ph‖0,� + ‖T − Th‖1,�

�C

(
inf

vh∈Xh
1

‖u − vh‖1,� + inf
�h∈Y h

1

‖T − �h‖1,� + inf
qh ∈ Mh

‖p − qh‖0,�
)

(53)

Proof
Let wh ∈Xh

2. Since (div (wh − uh), qh) = 0 ∀qh ∈ Mh , for the solution uh of the discrete problem
(50), we have that (wh − uh) ∈Vh ∩ Xh

0.
We subtract the discrete and the continuous Navier–Stokes equations (50) and (47), and testing

this difference with the (admissible) test function (wh − uh), we then have:

aTh (uh,wh − uh) − aT (u,wh − uh) + b̃(uh,uh,wh − uh) − b̃(u,u,wh − uh)

+ (div (wh − uh), ph) − (div (wh − uh), p) = Gr

Re2
((Th − T )k,wh − uh) (54)
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Next, we introduce two additional and arbitrary terms qh ∈ Mh and z∈V. A simple calculation in
(54) gives, for all vh ∈Xh

0:

aTh (uh,wh − uh) − aT (u,wh − uh) + b(uh − u, uh,wh − uh)

+b(u, uh − u,wh − uh) + 1

2

∫
�N

[uh · n]−uh · (wh − uh) − 1

2

∫
�N

[u · n]−u · (wh − uh)

= −(div (wh − uh), qh − p) + Gr

Re2
((Th − T )k,wh − uh) (55)

In addition, for all vh ∈Xh
0:

b(uh, uh, vh) − b(u,u, vh) = b(uh − u, uh, vh) + b(u,uh − u, vh)

(div vh, ph) − (div vh, p) = (div vh, ph − qh) + (div vh, qh − p)
(56)

From (55) we have:

aTh (wh − uh,wh − uh) − 1

Re

∫
�
(�(Th) − �(T ))D(u) : D(wh − uh)

− b(uh − u,uh,wh − uh) − b(u,uh − u,wh − uh)

+ 1

2

∫
�N

[uh · n]−(uh − u) · (wh − uh) − 1

2

∫
�N

[[uh · n]− − [u · n]−]u · (wh − uh)

= (div (wh − uh − z), qh − p) + Gr

Re2
((Th − T )k,wh − uh)

+ aTh (u − wh,wh − uh) (57)

The continuity of the applications a, b, a, b and those defined in (35) and (36), with the use of
Hölder’s inequality and the boundedness of the forms aT and aT gives for (57):

Ck�1
Re

‖wh − uh‖21,� − Cb‖uh‖1,�‖uh − u‖1,�‖wh − uh‖1,�

−Cb‖u‖1,�‖uh − u‖1,�‖wh − uh‖1,� − C3‖uh‖1,�‖uh − u‖1,�‖wh − uh‖1,�
�C3‖u‖1,�‖uh − u‖1,�‖wh − uh‖1,� + Cdiv‖wh − uh − z‖1,�‖qh − p‖0,�

+ Gr

Re2
Cg‖Th − T ‖1,�‖wh − uh‖1,� + Ca‖u − wh‖1,�‖wh − uh‖1,�

+Lip(�)

Re
CK ‖Th − T ‖1,�‖u‖1,�‖wh − uh‖1,� (58)

In (58) and hereafter, Lip(�) and Lip(�) are the Lipschitz-continuity constants of the dynamical
viscosity and the thermal conductivity functions.
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If wh =uh, (58) is trivially verified. If such is not the case, Equation (58) can be divided by
‖wh − uh‖1,�. An adequate grouping of the terms yields:

Ck�1
Re

‖wh − uh‖1,� � (Cb + C3)‖uh − u‖1,�(‖u‖1,� + ‖uh‖1,�)

+Cdiv ‖wh − uh − z‖1,�‖qh − p‖0,�
‖wh − uh‖1,� + Lip(�)

Re
CK ‖Th − T ‖1,�‖u‖1,�

+ Gr

Re2
Cg‖Th − T ‖1,� + CK ‖u − wh‖1,� (59)

At this level, the choice of z∈V being arbitrary, we take in particular z= 0 and (59) becomes:

Ck�1
Re

‖wh − uh‖1,� � (Cb + C3)‖uh − u‖1,�(‖u‖1,� + ‖uh‖1,�)

+Cdiv‖qh − p‖0,� + Lip(�)

Re
CK ‖Th − T ‖1,�‖u‖1,�

+ Gr

Re2
Cg‖Th − T ‖1,� + Ca‖u − wh‖1,� (60)

We recognize the term associated with the temperature ‖T − Th‖ in estimation (60). The next step
is to obtain a bound for this term from the energy equation in terms of the approximations of uh
and Th . For this, we subtract the discrete and the continuous energy equations (52) and (49) and
we obtain:

aT (T,�h) − aTh (Th, �h) + b̃(u, T, �h) − b̃(uh, Th, �h) = 0 (61)

or, by adding aTh (T,�h):

aTh (T − Th,�h) + 1

Pe

∫
�
(�(T ) − �(Th))∇T∇�h + b̃(u, T, �h) − b̃(uh, Th, �h) = 0 (62)

Let Sh ∈ Y h
1 be arbitrary. We choose as test function: �h = Sh − Th . The addition to both sides of

(61) of the term b(uh, Sh, Sh − Th) − b(u, T, Sh − Th) gives:

aTh (Sh − Th, Sh − Th) + b(uh, Sh − Th, Sh − Th) = aTh (Sh − T, Sh − Th)

+ b(uh, Sh, Sh − Th) − b(u, T, Sh − Th) + 1

Pe

∫
�
(�(T ) − �(Th))∇T∇(Sh − Th)

− 1

2

∫
�N

[u · n]−(T − Th)(Sh − Th) − 1

2

∫
�N

([u · n]− − [uh · n]−)Th(Sh − Th) (63)

We conveniently introduce an arbitrary velocity term wh in this estimate, and (63) becomes:

aTh (Sh − Th, Sh − Th) + b(uh, Sh − Th, Sh − Th) = aTh (Sh − T, Sh − Th)
+ b(wh − u, T, Sh − Th) + b(uh, Sh − T, Sh − Th) − b(wh − uh, T, Sh − Th)
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+ 1

Pe

∫
�
(�(T ) − �(Th))∇T∇(Th − Sh)

− 1

2

∫
�N

[u · n]−(T − Th)(Sh − Th) − 1

2

∫
�N

([u · n]− − [uh · n]−)Th(Sh − Th) (64)

We proceed to estimate the above equation in terms of the norms. As for the Navier–Stokes estimate
(58), this time we obtain from (64):(

C3�1
Pe

− Cb‖uh‖1,�
)

‖Sh − Th‖1,��Ca‖Sh − T ‖1,� + Cb‖wh − u‖1,�‖T ‖1,�

+Cb‖uh‖1,�‖Sh − T ‖1,� + Cb‖wh − uh‖1,�‖T ‖1,� + Lip(�)

Pe
‖T − Th‖1,�‖T ‖1,�

+C6‖u‖1,�‖T − Th‖1,� + C7‖u − uh‖1,�‖Th‖1,� (65)

And, from the triangular inequality:

‖T − Th‖1,��‖T − Sh‖1,� + ‖Sh − Th‖1,�
�‖T − Sh‖1,� + Pe(C3�1 − Cb‖uh‖1,�Pe)−1

[
Ca‖Sh − T ‖1,� + Cb‖wh − u‖1,�‖T ‖1,�

+Cb‖uh‖1,�‖Sh − T ‖1,� + Cb‖wh − uh‖1,�‖T ‖1,� + Lip(�)

Pe
‖T − Th‖1,�‖T ‖1,�

+C6‖u‖1,�‖T − Th‖1,� + C7‖u − uh‖1,�‖Th‖1,�
]

(66)

If we define the constant C1 by

C1 :=
(
1 − Pe(C3�1 − Cb‖uh‖1,�Pe)−1

(
1

Pe
Lip(�)‖T ‖1,� + C6‖u‖1,�

))−1

we observe that this constant is positive for small temperature data. From (66), we obtain:

‖T − Th‖1,� �C1

[
1 + Pe(C3�1 − Cb‖uh‖1,�Pe)−1(Ca + Cb‖uh‖1,�‖Sh − T ‖1,�

+Cb‖T ‖1,�(‖wh − u‖1,� + ‖wh − uh‖1,�) + C7‖u − uh‖1,�‖Th‖1,�
]
(67)

Using (67), we come back to the Navier–Stokes estimation obtained in (60), and we obtain

Ck�1
Re

‖wh − uh‖1,� � (Cb + C3)‖uh − u‖1,�(‖uh‖1,� + ‖u‖1,�) + Cdiv‖qh − p‖0,�

+C2[(1 + Pe(C3�1 − Cb‖uh‖1,�Pe)−1(Ca + Cb‖uh‖1,�)]‖Sh − T ‖1,�
+C2[Cb‖T ‖1,�(‖wh − u‖1,� + ‖wh − uh‖1,�)

+C7‖u − uh‖1,�‖Th‖1,�] + Ca‖u − wh‖1,� (68)
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where the positive constant C2 is defined by

C2 =C1

(
1

Re
Lip(�)Ck‖u‖1,� + Gr

Re2

)

After grouping similar terms, we have

C3‖wh − uh‖1,��C4‖wh − u‖1,� + C5‖Sh − T ‖1,� + Cdiv‖qh − p‖0,� (69)

with real constants C3,C4,C5 defined by

C3 =
[
Ck�1
Re

− C2C
b‖T ‖1,� − ((Cb + C3)(‖uh‖1,� − ‖u‖1,�) + C2C

7‖Th‖1,�)

]
(70)

C4 =[Ca + C2C
b‖T ‖1,� + ((Cb + C3)(‖uh‖1,� − ‖u‖1,�) + C2C

7‖Th‖1,�] (71)

C5 =[C2[1 + Pe(C3�1 − Cb‖uh‖1,�Pe)−1[(Ca + Cb‖uh‖1,�)] (72)

The real constant C3 is positive under the hypothesis of small data (low velocities and temperature,
moderate buoyant force). The constants C4 and C5 are positive by definition. As the velocity and
temperature solutions ‖u‖1,�, ‖uh‖1,�, ‖T ‖1,� and ‖Th‖1,� are bounded by the data, these three
constants defined by (70)–(72) are also bounded.

Under the condition imposed by (70) requiring that C2 > 0, we obtain a bound for ‖wh−uh‖1,�
in (69) in terms of ‖wh − u‖1,�, ‖Sh − T ‖1,� and ‖p − qh‖0,�. Next, triangular inequality and
(70) results in:

‖u − uh‖1,� � ‖u − wh‖1,� + ‖wh − uh‖1,�

� 1 + C4

C3
‖u − wh‖1,� + C5

C3
‖T − Sh‖1,� + Cdiv

C3
‖qh − p‖0,� (73)

The choice for the elements wh, Sh, qh being arbitrary, we can state from (73)

‖u − uh‖1,� � 1 + C4

C3
inf

wh∈Xh
2

‖u − wh‖1,� + C5

C3
inf

Sh∈Y h
1

‖T − Sh‖1,�

+ Cdiv

C3
inf

qh∈Mh
‖p − qh‖0,� (74)

In (74), the infimum for the velocity approximations is taken in the space Xh
2 (BCs and discrete

divergence-free conditions). Following (46), with the discrete compatibility condition (41) this
infimum is bounded by the infimum of wh ∈Xh

1 (BCs only), and we obtain the first estimate in
(53).

In a similar manner, we can estimate the term ‖T − Th‖1,�. Returning to (67) and with the
estimations of ‖wh − uh‖1,� and ‖u− uh‖1,� given by (69) and (73) we obtain, for other generic
constants C6,C7,C8 that

‖T − Th‖1,��C6‖u − wh‖1,� + C7‖T − Sh‖1,� + C8‖p − qh‖0,� (75)

and the temperature estimate for (53) follows.
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Finally, for the pressure estimate, by considering the Navier–Stokes equations (47) and (50)
tested against vh ∈Xh

0 we obtain

(div v, p) = aT (u, vh) + b̃(u,u, vh) − Gr

Re2
(Tk + F, vh)

(div vh, p) = aTh (uh, vh) + b̃(uh,uh, vh) − Gr

Re2
(Thk + F, vh)

(76)

Let qh ∈ Mh . The differences between the two equations in (76) result in

(div vh, qh − ph) = (div vh, qh − p) − Gr

Re2
((T − Th)k, vh) − aTh (uh − u, vh)

b(uh,u − uh, vh) + b(u − uh,u, vh) + 1

Re

∫
�
(�(Th) − �(T ))D(u) : D(vh)

+ 1

2

∫
�N

[uh · n]−(uh − u) · vh − 1

2

∫
�N

[[uh · n]− − [u · n]−]u · vh (77)

If we note by � the (strictly positive) bound for the uniform compatibility condition (41), as in the
previous estimations, we have

�‖vh‖1,�‖qh − ph‖0,� �Cdiv‖vh‖1,�‖qh − p‖0,� + Cg Gr

Re2
‖vh‖1,�‖T − Th‖1,�

+Ca‖u − uh‖1,�‖vh‖1,� + CK Lip(�)

Re
‖T − Th‖1,�‖u‖1,�‖vh‖1,�

+Cb‖uh‖1,�‖u − uh‖1,�‖vh‖1,� + Cb‖u − uh‖1,�‖u‖1,�‖vh‖1,�
+C9(‖u‖1,�+‖uh‖1,�)‖u−uh‖1,�‖vh‖1,�(‖u‖1,�+‖uh‖1,�) (78)

If vh = 0 the estimation above is trivial. If this is not the case, the division by �‖vh‖1,� results in

‖qh − ph‖0,� � Cdiv

�
‖qh − p‖0,� +

(
Gr

�Re2
Cg + ‖u‖1,�CK Lip(�)

�Re

)
‖T − Th‖1,�

�−1(Ca + (Cb + C9)(‖uh‖1,� + ‖u‖1,�))‖u − uh‖1,� (79)

And finally, the triangular inequality leads to

‖p − ph‖0,� � ‖p − qh‖0,� + ‖qh − ph‖0,�

�
(
1 + Cdiv

�

)
‖p − qh‖0,� +

(
Gr

�Re2
Cg + ‖u‖1,�CK Lip(�)

�Re

)
‖T − Th‖1,�

�−1(Ca + (Cb + C9)(‖uh‖1,� + ‖u‖1,�))‖u − uh‖1,� (80)
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With the previous estimations obtained for ‖u−uh‖1,� and ‖T−Th‖1,� we have the final estimation
which gives (53). �

Remark 1
As mentioned in Part I (see [19]), from the study realized in this section, it follows that for the
model with generalized outflow BCs analysed, if we consider in addition 	, � ∈ R+ and g ∈ L2(�),
we can adapt the previous FE analysis to the model given by

	(u, v) + aT (u, v) + b(u, u, v) + 1

2

∫
�N

[u · n]−u · v + (div v, p) = (F, v) + Gr

Re2
(Tk, v)

(divu, �) = 0

�(T,�) + aT (T,�) + b(u, T, �) + 1

2

∫
�N

[u · n]−T� = (g, �)

(81)

All the previous proofs and bounds are easily adapted to this new situation. In consequence, one
can show that the discretized version of (81) admits a unique solution when using small data, with
newer a priori bounds and a new (and weaker) ellipticity condition instead of (9).

This problem (81) arises when the corresponding evolution problem is discretized by backward
difference formulas (see [29]).

4. NUMERICAL EXPERIMENTS

This section is devoted to the discussion of some numerical experiments performed on the analysis
of the coupled steady problem (47)–(49), in view of validating the model in some simple and
well-known physical cases.

Because the dynamics of this kind of coupling are expected to be unsteady, we shall also present
further unsteady experiments. Although the previous analysis considered the steady problem,
following Remark 1, the core of the unsteady code is based on a sequence of augmented steady-
type equations.

4.1. Main aspects of the FE code

The numerical code is implemented with the Q2–P1 pair of FE for the velocity and pressure, a
pair of inf–sup compatible FEs. For the temperature, we keep Q2 approximations as we do for
each component of the velocity field. Therefore, the approximation results deduced in the previous
section are applicable.

This choice of the elements is motivated by two fundamental reasons: first, the good and robust
behaviour that situates the Q2–P1 pair as one of the most existing currently for two-dimensional
flow calculations (see, for instance, [30–32]), and second, due to the consideration of the buoyancy
term in the model. It seems more reasonable to have a discontinuous approximation of pressure in
order to assure an element-level mass balance, and also to control the incompressibility condition
and the quality of the hydrostatic pressure (see [29, 33]).

As in the previous analysis, we perform in the code a global decoupling with temperature
(outer iteration), and we solve the associated Navier–Stokes equations (inner iteration), for this
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temperature field, followed by the resolution of a linear energy equation. The inner iteration of the
Navier–Stokes equations is carried out by the Picard iteration, as well as for the outer iteration.

The finite-dimensional system in each resolution step of the Navier–Stokes equations is solved
globally (velocity and pressure) by means of an incomplete block LU preconditioning strategy.
The resulting preconditioned system is solved iteratively by BICGSTAB(4) (see [34]). Once some
relative error bound is reached in two successive approximations for the velocity, the inner iteration
ends and we proceed with the resolution of the energy equation with the calculated velocity for
the convective term.

The finite-dimensional system in the energy equation is solved by GMRESR (see [35]). The
same stopping criterion on the relative error between two successive temperature approximations
is used for the global (outer) iteration.

In the following, the geometry for all the numerical experiments corresponds to a two-
dimensional straight channel with a 1:10 height/width ratio. The fluid studied is water, with a vis-
cosity law chosen by means of the Andrade correlation valid for [10, 100◦C]: �(T ) =C1 expC2/T ,
with constants C1 = exp(−12.9896) and C2 = 1780.622 obtained by least-squares fitting according
to the viscosity values found in the literature (see [36, 37]). The water enters in the channel at a
constant velocity and a temperature of 20◦C. We first consider the two isothermal walls kept at
80◦C with no buoyancy effect, and in the second part a non-isothermal wall with 20◦C at the top,
and 80◦C at the bottom, and with buoyancy effects.

Because of the non-dimensional model, the non-dimensional height and width in the code are
1 and 10, respectively. We then choose as vertical spatial step hy = 1

25 and an horizontal step
hx = 2

25 . In the following results, the tolerances for the iterative inner and outer iterations was set
to 10−6. Concerning the solvers, a 10−9 tolerance was required. The mesh size has been compared
and tested against finer meshes, giving similar results which will be presented later.

4.2. Steady results: isothermal walls temperature with no buoyancy

First, if we consider a constant velocity at the inflow, we do not have the regularity profile required
in our previous analysis. However, this is a heuristic way to validate the code performances. It
is well known that in the laminar steady flow, a uniform velocity profile at the entry becomes
a parabola inside the channel (Poiseuille profile). In this first experiment, we do not consider
buoyancy effects, and we therefore have Gr= 0.

We consider the two cases: a constant value for the viscosity (taken on the reference temperature
Tm), and secondly the case corresponding to a variable viscosity following the Andrade law
�(T ) =C1 expC2/T , C1 = exp(−12.9896), C2 = 1780.622 (see [38]).

We choose Tm = (Tupper +Tlower)/2= 50◦C, as the reference temperature, which gives a Prandtl
number equal to Prm = 3.57. The Reynolds number is chosen as Rem = 10. The characteristic tem-
perature difference is �Tref = Twalls − Tinlet = 60◦C, from which the non-dimensional temperature
is given by


 = T − Tm
�Tref

, −0.5�
�0.5 (82)

Figure 1 shows the velocity profiles at the section x = 1. We note that for the constant viscosity
case, the profile obtained is in very good agreement with the well-known Poiseuille profile [39].
For the variable viscosity model, the velocity profile is much more flattened, which is a classical
result for liquids [39].

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:91–114
DOI: 10.1002/fld



NAVIER–STOKES SYSTEM WITH TEMPERATURE-DEPENDENT VISCOSITY 107

Figure 1. Steady experiment: horizontal velocity profiles at x = 1 for the isothermal walls simulation.
The continuous line indicates the constant-viscosity simulation, and the dashed line indicates the

Andrade-law viscosity liquid simulation.

The local Nusselt number Nu(x) is defined classically by

Nu(x)= �
/�z

w − 
b

(83)

with 
b the bulk temperature given by:


b =
∫ 1

0
u
 dz (84)

Figure 2 shows for both the situations studied a classical behaviour corresponding to a slight
increase of heat transfer, taking into account the variation of viscosity with temperature, as can be
confirmed in [39]. These results confirm the code validation.

4.3. Steady results: non-isothermal wall temperature (buoyancy effects)

As a second numerical experiment, we keep the entry temperature at 20◦C and the lower wall at
80◦C. We now fix 20◦C for the upper temperature and consider the buoyancy effects.

The reference temperature is kept at Tm = 50◦C, with an associated Prandtl number Prm = 3.57.
We choose values for Rem = 5 and Grm = 1000. It is shown in [29], that for these parameters the
flow is naturally unsteady with a regular structure of thermoconvective travelling waves associated
with the mixed convection. It is worth noting that the fundamental nature of the phenomena is
unsteady (streamwise and timewise periodic). Thus, the following results must be understood as
qualitative only.
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Figure 2. Steady experiment: local Nusselt number distribution Nu(x) on the channel. The
continuous line indicates the constant-viscosity simulation, and the dashed line indicates the

Andrade-law viscosity liquid simulation.

Figure 3. Steady experiment with non-isothermal walls and no buoyancy: the horizontal
velocity, radial velocity and temperature profiles are shown at x = 0.5, for the non-isothermal
walls. The square symbol represents the case �= constant. The triangle symbols represents

the Andrade-law fluid simulation � = �(T ).

Figure 3 shows the velocity and temperature profiles at x = 0.5 for constant viscosity and
buoyancy, and for variable viscosity and without buoyancy. We have chosen these two cases in
order to compare the effects of these conditions: with and without variable viscosity, with and
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Figure 4. Unsteady experiment with buoyancy: snapshots of isotherms after 12 time units for the experiment
with Re= 5 and Gr = 1000 for the constant-property case.
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Figure 5. Unsteady experiment with buoyancy: snapshots of the instantaneous radial
velocity profiles after 12 time units for the numerical experiment performed with Re= 5

and Gr = 1000 for the constant-property case.
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Figure 6. Unsteady experiment with buoyancy: spatial periodicity analysis for the radial
velocity and time temporal periodicity analysis at x = 6 for the experiment with Re= 5 and

Gr= 1000 for the constant-property case.

without buoyancy. It appears clearly that in this steady analysis the effects are essentially located at
the entrance. The maximum velocity moves upwards due to the gravity force whereas the velocity
profile is slightly deformed downwards. Moreover, we notice that, compared to the viscosity
dependence on temperature (�(T )), the effect of buoyancy is greater than the opposition by the
transverse velocity behaviour v.

These figures show clearly the effect of buoyancy. It acts in the direction opposite of �(T ).
Such behaviours are expected and classically obtained in these configurations. But we have to note
that if these results are coherent globally, they do not faithfully represent the reality and the great
complexity of the flow.

4.4. Unsteady results: non-isothermal wall temperature (buoyancy effects)

For a third numerical experiment, we keep the previous configuration: entry temperature at
20◦C, upper wall at 20◦C, lower wall at 80◦C, and buoyancy effects. The fluid properties are
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considered to be constant. The fluid considered is water, with a Prandtl number taken as 3.57 (water
at 50◦C).

Figure 4 shows the instantaneous isotherms (10 snapshots) of the flow for a Reynolds number
equal to 5 and a Grashof number equal to 1000. These isotherms are obtained after running
12 complete time units, and they can be considered as representatives of the permanent regime.
Figure 5 shows the associated instantaneous radial velocity v(x, y, t), which seems to be spatially
and temporally periodic.

We can observe in the sequence of snapshots the existence of travelling waves, which are created
in the developing zone (0<x<3), and correspond to the linear amplification of instabilities, as
shown in [40]. This zone is followed by a transitional one (3<x<4), and finally, by a saturated
zone (x>4), where the thermoconvective rolls are established regularly and periodically.

The observed behaviour on these three zones were already noted in [41] when open channel
flows were studied.

In Figure 6, the spatial periodicity of the radial velocity v(x, y, t) is shown at different instants.
After a fast Fourier transform (FFT) analysis of this radial velocity, we recognize the fundamental
frequencies associated with the waves in different sections. Due to this regular spatio-temporal
periodicity, we can assume that in the zone where the thermoconvective rolls are established (x>4),
the radial velocity has the characteristic form of a travelling wave:

v(x, y, t) = ṽ(x, y)ei(kx−�t)

Moreover, with the numerical results of this experiment, we can determine the wavelength � = 1.8,
the wavenumber k = 3.49, the temporal period T = 1.65 and the pulsation p= 3.8. Thus, the
corresponding phase velocity is c= 1.09. This result is perfectly coherent with those found in the
specialized literature (see [42]).

5. CONCLUSION

In this second part, we have performed a FE error analysis of the steady coupled problem coming
from a generalized Boussinesq model. Some numerical experiments are performed, which show
that the effect of the viscosity variations in the fluid are not negligible when buoyancy effects are
considered.

For this model, we have stated a general approximation result, which shows that for consistent
velocity/pressure FE spaces, the quality of the numerical solution is linked to the approximation
properties of the FE subspaces.

Even if the steady buoyancy problem has no physical interest, the results shown in the numerical
experiences are in good agreement with well-known dynamic and thermal behaviours (see [39]).
The unsteady experiments shown that the unsteady model is consistent with the expected flow
dynamics.

Obviously, the richness of this phenomenon lies in the unsteady situation. This aspect will be
the subject of future research.
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et son approximation par Eléments Finis. Mathematical Modelling and Numerical Analysis 1995; 29(7):871–921.
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